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Abstract—Automatic Music Transcription is one of the 

most challenging fields of Artificial Intelligence. While it has 

been studied thoroughly for years, the performance of 

modern methods still fall short of being satisfiable due to the 

issues of handling multi pitch and multi instrument audio. A 

method of separating sounds in an audio signal can be used to 

improve the accuracy of Automatic Music Transcription 

techniques. An interesting way to tackle the separation of 

sounds is through the use of Principal Component Analysis. 

This paper attempts to achieve sound separation by using 

PCA. 
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I.   INTRODUCTION 

Automatic music transcription remains one of the most 

challenging tasks in the field of artificial intelligence and 

machine learning, and it continues to be an area of active 

research. Despite significant advancements, current 

methods still face considerable limitations, particularly in 

their ability to transcribe polyphonic music (music where 

multiple notes are played simultaneously). While a variety 

of techniques have been employed to address this problem, 

ranging from salience functions to modern deep learning 

models such as transformers, no solution has yet emerged 

that can fully satisfy the transcription needs of complex 

music without human intervention. 

The core challenge of automatic music transcription lies 

in its ability to accurately process polyphonic audio, 

especially in cases where multiple instruments are involved. 

In polyphonic music, each note can have distinct 

characteristics based on the instrument producing it, its 

pitch, timbre, and dynamics. The overlap of notes from 

various instruments in a dense mix can make it incredibly 

difficult for existing transcription methods to separate and 

identify individual musical elements. As the number of 

simultaneous notes increases, the complexity of the 

transcription task grows exponentially, and current 

approaches often fail to provide results that are both 

accurate and interpretable. This becomes even more 

problematic when attempting to transcribe complex 

musical compositions or performances featuring multiple 

instruments playing in harmony or counterpoint. 

One promising direction for improving transcription 

accuracy is the use of machine learning techniques. 

However, even with these advancements, most methods 

are highly dependent on the specific instruments or genres 

on which the model has been trained. For example, a model 

trained on piano music might perform well for piano pieces, 

but it may struggle when attempting to transcribe other 

instruments such as strings or brass. This limitation 

underscores the lack of a generalizable, universal 

transcription model that can handle the full spectrum of 

instruments and musical styles. As of now, the 

development of such a universal model remains an open 

challenge in the field. 

This paper presents an attempt to address some of the 

shortcomings of current automatic music transcription 

methods by exploring an alternative approach for sound 

separation, specifically focused on strictly harmonic music. 

The proposed method leverages Principal Component 

Analysis (PCA), a statistical technique commonly used for 

dimensionality reduction and feature extraction, to 

decompose a musical track into its constituent notes and 

their associated characteristics. While not providing full 

music transcription, the goal is to enable a more efficient 

and effective means of transcription that is not bound to 

any single instrument. 

PCA has long been used for feature extraction in other 

domains, such as image processing, where it helps to 

capture the most important features of visual data while 

discarding less significant information. In the context of 

music transcription, PCA holds the potential to extract 

meaningful features from the complex audio signal, 

allowing for the identification of the fundamental musical 

elements like pitch and timbre. This approach draws 

inspiration from both the traditional method of Non-

Negative Matrix Factorization (NMF) and the way PCA is 

employed in image and signal processing. While NMF has 

been used in music transcription to separate mixed audio 

signals into constituent parts, the application of PCA offers 

an opportunity to explore new ways of modeling the 

relationships between musical features in a more compact 

and computationally efficient manner. 

The ultimate goal of this paper is to contribute to the 

development of a more robust and scalable automatic 

music transcription method that can handle the challenges 

of polyphony and multiple instruments. By utilizing PCA 
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to extract a set of harmonically significant features from 

the music, it is hoped to lay the groundwork for a 

transcription system that is both versatile and applicable 

across different musical genres and instrumentation. In 

doing so, this research aims to move closer to the creation 

of a universal music transcription system that can be 

applied to any piece of music, regardless of its complexity 

or instrumentation. 

 

II.   SPECTROGRAM CREATION 

 
Fig. 1 Example of a Spectrogram in Audacity 

 

The first step to achieve sound separation of music is to 

decompose the complex audio signal that makes up the 

signal into a combination of simpler signals at various 

points of time of the original signal. Typically, sine wave 

signals of varying frequencies are used to decompose the 

original signal as it has been proven that all signals can be 

represented as a combination of sine waves with different 

frequencies (the number of sine waves within the 

combination does not have to be finite). Decomposing the 

original signal as such at various time intervals makes it 

easier to analyze the frequencies present at a given time 

period. 

To decompose the audio signal as described previously, 

a transformation known as the Short-Time Fourier 

Transform (STFT) is employed. More precisely, this paper 

uses the discrete-time version of the STFT to decompose a 

discretely sampled audio signal. The discrete-time STFT is 

a variation of the Discrete Fourier Transform (DFT) which 

itself is a version of the Fourier Transform (FT) that works 

on discretely sampled signals. 

As a brief explanation, the Fourier Transform (FT) is a 

transformation that turns a wave function (mapping time to 

amplitude) into a function of frequency contribution 

(mapping the frequencies of contributing sine waves to 

their amplitude and phase shift). Fourier Transform (FT) 

traditionally takes in continuous wave signals as an input 

and produces continuous frequencies as an output. The 

following is the equation representing the Fourier 

Transform (FT) of an integrable wave function ƒ with ξ as 

a value representing a specific frequency. 

 

𝑓(𝜉) =  ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝜉𝑥 𝑑𝑥
∞

−∞
 (1) 

 

The result of this equation is a complex number which 

represents both the amplitude and phase shift of a 

contributing sine wave with a frequency that corresponds 

with ξ. The magnitude of the complex number represents 

the amplitude of the sine wave, while the imaginary part 

represents its phase shift. 

As the audio signals used to store recordings of music 

are typically not continuous but rather discretely sampled 

points of the actual audio waves, the traditional Fourier 

Transform (FT) cannot be used. Instead, a variation of it 

know as the Discrete Fourier Transform (DFT) is 

employed. As the name suggests, the DFT is a variation of 

the Fourier Transform (FT) that works for discretely 

sampled points of the wave function that are spaced equally 

apart in time. As the input of the DFT is a finite set of 

discrete points, its output is also a finite set of discrete 

frequency contributions ranging from 0 to the audio 

signal’s Nyquist frequency which is half of the sampling 

rate of the signal. The DFT can be represented as the 

following equation with k as the wavelength of a sine wave, 

N as the number of samples and x as the set of samples. 

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖2𝜋
𝑘

𝑁
𝑛𝑁−1

𝑛=0  (2) 

 

Equation (2) represents Xk as the result of applying DFT 

on a set of samples x for a sine wave with a frequency 

corresponding to the wavelength k in terms of samples. 

While (2) describes the general equation for the DFT, most 

implementations of DFT uses a class of algorithms known 

as Fast Fourier Transforms (FFT) to compute the result of 

the DFT using a more efficient method. 

Another issue that needs to be addressed in both the 

Fourier Transform (FT) and Discrete Fourier Transform 

(DFT) is the lack of time information in the result. Both FT 

and DFT are able to identify what frequencies are present 

in a signal, but neither are able to locate where those 

frequencies exist within the signal. This is especially 

problematic in the case of musical analysis as the 

frequencies representing notes in a musical recording 

change frequently and the specific location of each 

frequency is important for representing the audio signal 

properly. This issue is solved by applying the discrete-time 

version of the Short-Time Fourier Transform (STFT) on 

the signal instead of FT or DFT. 

Generally, the STFT is an application of FT or DFT with 

a windowing function that limits the FT or DFT to only a 

portion of the signal. By sliding this window over the audio 

signal, it is possible to get the frequency information at 

different points of time of the original audio signal. The 

general equation for STFT can be shown as the product of 

the FT (for continuous signals) or DFT (for discrete 

samples) and the windowing function. The equation for 

discrete-time STFT which is the STFT used in this paper is 

as the following. 

 

𝑋(𝑚, 𝜔) = ∑ 𝑥𝑛𝑤(𝑛 − 𝑚)𝑒−𝑖2𝜋𝜔𝑛∞
𝑛=−∞  (3) 

 

Equation (3) represents the discrete-time STFT as the 

function X with m representing a point of time in the signal 

and ω representing a value corresponding to a specific 

frequency. Equation (3) also includes w as the windowing 

function used to localize the signal to a specific point in 
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time. While the mathematical representation of the STFT 

may be a bit complicated, in practice, the STFT only 

involves splitting the audio signal into multiple chunks, 

applying the windowing function on every chunk, and 

applying FT or DFT on each chunk separately. 

The discrete-time STFT is applied to the audio signal, 

creating a representation of the signal in terms of time and 

frequency. Afterwards, a spectrogram of the audio signal 

is generated using the results of the discrete-time STFT. 

The spectrogram is generated by squaring the magnitude of 

each frequency contribution of the STFT. Doing so 

eliminates the phase shift information which is not needed 

for the purposes of this paper. 

 

III.   PRINCIPAL COMPONENT ANALYSIS 

 
Fig. 2 PCA of a multivariate Gaussian distribution 

(https://en.wikipedia.org/wiki/Principal_component_anal

ysis#/media/File:GaussianScatterPCA.svg) 

 

The next step for sound separation is to identify the base 

notes that make up all the different sounds present at any 

time in the audio signal. This is done by representing the 

spectrogram information as a matrix where each row is the 

spectrogram data at a specific time point and applying 

Principal Component Analysis (PCA) on the matrix. Doing 

so projects the original matrix into a space where each 

point is represented as a combination of principal 

components that maximize the variance of each data point. 

By eliminating principal components with little to no 

variance, it is also possible to filter out noise from the audio 

signal, resulting in a cleaner representation of the signal. 

Principal Component Analysis (PCA) is a method to 

represent a set of data by its principal components. 

Principal components are defined as a set of orthonormal 

vectors that make up axes such that data points projected 

to these axes have maximum variance compared to all 

other axes. PCA commonly follows three steps, those steps 

being data centering, covariance matrix calculation, and 

Singular Value Decomposition (SVD). 

Data centering is the process of positioning the data such 

that the average for all data points is located at the origin. 

This is done to ensure that principal components of PCA 

point at the direction of maximum variance when data 

points are distributed more towards a certain direction. In 

practice, data centering is a simple process which only 

involves subtracting each data point with the average of the 

dataset. This process can be represented by the following 

equation where p is a data point, p’ is the centered data 

point, and N is the number of data points. 

 

𝑝′ = 𝑝 −
1

𝑁
∑ 𝑝𝑖

𝑁−1
𝑖=0  (4) 

 

Covariance matrix calculation is a step where the 

covariance matrix of the centered data is calculated. A 

covariance matrix is a square matrix that encodes the 

covariance between all pairs of data points in a dataset. 

Keeping in mind that the data has already been centered, 

the covariance between two variables x and y can be 

calculated using the following equation. 

 

𝑐𝑜𝑣𝑥,𝑦 =
∑ 𝑥𝑖𝑦𝑖

𝑁
 (5) 

 

In equation (5), covx,y represents the covariance between 

variables x and y in a dataset that’s already centered with 

N representing the number of data points. For the 

spectrogram matrix, the covariance matrix represents the 

covariance between each column representing a specific 

frequency. Such a covariance matrix can be calculated 

using the following equation. 

 

𝐶 =
1

𝑁
𝑋𝑇𝑋 (6) 

 

In equation (6), C represents the covariance matrix, 

while X represents the spectrogram matrix and N 

represents the number of data points. The covariance 

matrix has a few interesting properties, such as being 

symmetric and the diagonal elements being the variance of 

a column (its covariance with itself). 

The final part of PCA is the application of Singular 

Value Decomposition (SVD) on the covariance matrix. 

Singular Value Decomposition is a method to decompose 

a matrix into three other matrices representing a rotation, 

scaling, and another rotation. The purpose of using SVD in 

PCA is to obtain a transformation from the original space 

to the principal component space. SVD decomposes an 

mxn matrix A into an mxm matrix U, an mxn matrix Σ, and 

an nxn transposed matrix V such that: 

 

𝐴 = 𝑈Σ𝑉𝑇 (6) 

 

In equation (6), the matrix Σ is a diagonal matrix of the 

singular values of A sorted in descending order. The 

singular values of A can be calculated by finding the square 

root of the eigenvalues of the matrix ATA. The matrix V is 

a matrix of the right singular vectors of A which are the 

eigenvectors of the matrix ATA divided by their length 

arranged by column. Similarly, the matrix U is a matrix of 
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the left singular vectors of A which are the eigenvectors of 

the matrix AAT divided by their length arranged by column. 

Both matrices U and V are orthonormal matrices so when 

there aren’t enough eigenvectors to fill the matrices, a 

normal vector that is orthonormal to all other vectors in the 

matrix is chosen to fill in the gaps. 

After applying PCA on the spectrogram matrix, it is 

hoped that the principal components of the dataset points 

in the direction of different base notes that make up all 

different sounds present within the audio signal. 

 

IV.   IMPLEMENTATION 

A program was created to try and implement the 

approach previously explained to separate sounds to verify 

the viability of the method. The implementation of the 

approach was created using Python 3.12.4 with the scipy, 

numpy, and matplotlib packages. In order to run, this 

program requires two things: a WAV file containing music 

and the tempo (BPM) of the music. 

The program starts by opening the WAV file and 

extracting the all the samples contained within it. It also 

extracts the sampling frequency used to generate the 

samples. If the audio is found to be in stereo, then the 

program flattens the audio signal by taking the average of 

the two tracks, turning the audio signal into mono. This is 

done so that the entire audio track can be represented 

within one spectrogram. 

After getting the sample points, the program calculates 

the size of the window that should be used when creating 

the spectrogram. The window size is calculated by the 

tempo of the music that was specified. The window size is 

configured in such a way so that the size of the window is 

equal to the length of a beat of the music. That size is 

calculated by dividing the tempo in bpm by sixty to get the 

tempo in bps, then calculating the duration of a beat which 

is 1 / bps and then calculating the number of samples a 

window should be by multiplying the duration of a beat by 

the audio signal’s sampling frequency. The window size is 

defined as such so that each data point in the spectrogram 

correlates to a specific beat in the track. 

After getting the sample points and determining the 

window size, a spectrogram of the audio signal is generated 

and shown to the user. The spectrogram displays the 

contribution of frequencies at different times in terms of 

decibels (dB). The conversion from the usual spectrogram 

value to decibels is done by taking the base 10 logarithm 

of the value. The conversion to decibels is done to improve 

the color contrast of the spectrogram. The displayed 

spectrogram itself is just a way to verify that the audio had 

loaded in properly. 

After displaying the spectrogram, the program proceeds 

to do PCA on the spectrogram data by performing data 

centering on the spectrogram matrix and putting it through 

SVD. The covariance matrix calculation part of PCA has 

been skipped because it has been found that the SVD alone 

is enough to generate the principal components. After the 

program has finished calculating the principal components, 

its values are outputted to a text file since the result doesn’t 

fit in the terminal. 

 

V.   RESULTS 

 
Fig. 3 Spectrogram Result of The Program 

 

The program was supplied with a cut version of the song 

醜い生き物 (read Minikui Ikimono) by CHiCO with 

HoneyWorks. The program described in the 

implementation section of this paper was able to 

successfully generate a spectrogram and perform PCA on 

the spectrogram matrix. It was able to display the 

spectrogram and the resulting principal components. 

 

 
Fig. 4 Principal Component Result of The Program 

 

VI.   DISCUSSION 

The generation of principal components was successful 

just as the paper predicted. But some problems occurred 

when trying to use the principal components for sound 

separation. 

First, the ability for principal components to have 

negative elements does not match how sound waves 

behave. The appearance of negative elements within the 

principal components implies the existence of a negative 

frequency. Of course, such a thing does not exist in this 

world which means the principal components themselves 

do not represent the base notes of the music. 

Second, the data centering process of PCA makes it so 

that the principal components do not originate from the 

origin of the data. In the case of a spectrogram, the origin 

point represents complete silence. All sounds that are in the 

audio signal should be created by adding base notes of 

differing scales to the origin. As the principal components 

themselves do not originate from the origin, it cannot be 

said that they are the true base notes of the music. 

Third, the base notes of a music do not strictly have to 

be orthogonal to each other. Orthonormality is a key 
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feature of principal components, but not that of base notes. 

As such, not all the base notes might be captured by the 

principal components. That is if the principal components 

manage to capture any base notes in the first place 

considering the two other problems with the PCA method. 

From the three problems discovered with this method, it 

has become apparent that applying the raw PCA method on 

the spectrogram matrix of a musical recording is not viable 

for sound separation, even when restricting the music given 

to strictly be composed of harmonic instruments. 

Non-Negative Matrix Decomposition serves to be a 

better method of automatic music transcription and sound 

separation as it inherently limits the decomposition to 

matrices with non-negative values. Such a decomposition 

is more fit to decompose music as a signal composed of the 

addition of many simpler signals. 

 

VII.   CONCLUSION 

The use of Principal Component Analysis (PCA) for the 

purpose of sound separation in an effort to expand 

Automatic Music Transcription (AMT) is at first an 

interesting thought. But as shown in this paper, the PCA 

method is not suited for handling and decomposing strictly 

positive data. A Non-Negative Matrix Decomposition 

approach is more suited for the problem of sound 

separation and Automatic Music Transcription without the 

need of specific instrumental data but more research is still 

needed in order to achieve satisfiable results. 
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